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AND THE PASSAGE TO 
THE LIMIT WITH RESPECT TO LONGITUDINAL VISCOSITY IN THE 

NAVIER-STOKES EQUATIONS* 

V.M. SOLOPENKO 

It is shown that the generalized Prandtl equations (GPE) represent a 
limiting case of the Navier-Stokes (NS) equations when the "longitudinal" 
viscosity tends to zero. An estimate for the neglected terms is obtained 
and a theorem of existence proved for the GPE. The theorem was established 
earlier /l/ for the case of homogeneous conditions. 

The passage to the limit of the non-steady Euler equations is carried 
out in /2/ under the assumption that the vorticity vanishes on the solid 
surfaces. Although the assumption is not physically justified, it 
enables the integrals over the solid surfaces to be estimated easily. 

It is well-known that the use of the Hopf truncation for the NS 
equations in the inhomogeneous stationary problelrof flow, leads to an 
estimate of the nor of the velocity gradient depending exponentially on 
viscosity /2, 3/. We note that no such difficulty arises in the case of 
the non-stationary problem, nor in the Cauchy problem /4, 5/. In the 
first case the "smoothing" may take place with time, and in the second 
case there are no boundary effects at all. 

The problem of flow with various boundary conditions specified in 
terms of the stream and Bernoulli functions, free from the above drawbacks, 
is studied below. 

1. Formulation of the problem. The flow takes place within the square R = (0.1) x 
(0,1) . We denote the segment r=O by rl and number the remaining sides l?2,3,4 in an 

anticlockwise direction r,?s denote the inflow and outflow segments respectively, and r2,, 

are rigid walls. Introducing the Bernoulli function H = p+- '/2(~v')2 ,-1,'2($x')2 1 n (the nota- 
tion is standard), we consider the system of equations 

. *u + Y*IJ.p”)r’ + 
;::;,n + vp\l.“*“)y’ 

Hy' = &‘Av T f2, 0 .< P1 < v2 (1.1) 
- H,' = -&‘Aq - fl. v2 > 0 

where f,, 1 are the components of the mass force vector. When v, = \'* = \‘, we have the NS 
equations and when y1 = 0, we have the GPE. Eliminating H, we can rewrite (1.1) in the 
following equivalent form: 

VI wx* T vz CAW; = - J;’ (.h&’ -c cl’“’ (A$),’ + ,t;, - t;, 

l Prikl.Matem.Mekhan.,49,2,227-2X5,1985 

(1.2) 
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The boundary conditions of adhesioil have the form 

$ I2 = t”’ 12,‘ = 0, rl;%’ I4 = 0. (1.3) 

Two types of conditions on rI,J corresponds to two problems under consideration, but the 

Bernoulli function H is given in both cases: 

H I i = Hi (Y); @xl” + aQ”) I i = ?I (Y), a< 1, i =I,3 (1.4) 
(problem A) 

h- I i = Hi (Y); -_tl’ 1 i = Vi (y), (Vi = Uiy’ = 0, _Ij = 

0, 1), i = 1, 3 (problemB). 

The condition a< 1 is necessary for the problem to be Shapiro-Lopatinskii correct. 
The case a= -1 corresponds to specifying the tangential stress. We note that we cannot 
replace the last condition of (1.3) by $ 1, = g, since the problem will then become over- 
defined and from the physical point of view the flow rate is related primarily to the values 

of HI,,. 
Let us introduce the notation for the norms of the right-hand sides of the problem 

The scalar product in L2 (0) can be written as (a. b). I\ a//= (a.~)'/*, and we use the angle 
brackets for the boundary integrals 

(a. b\,’ = \ abdri - \ abdFj 

We shall apply the anisotropic Sobolev space ii.;"":', and Besov space Br;"", using tne 

notation of /6/. In addlEion, WE shall find the weight space l-;i,p(g) (/7/, Sect.101 with the 
norm 

useful, where r is a smooth function equal in the neighbourhood of any angle point R, to 
the distance to it. We shall regard D" as an n-th order arbitrary differential operator. 

We define the following ser.linonns: 

(1.i) 

2. Auxilliary assunntions. We first establish the properties of smoothness. 

Lemma 1 (concerning the behaviour of solutions at the angle points). Let a finite f.mc- 

ticn 1% ii-,"' (K) be defined within the angle K (I 1 0. y ‘. 0). Then the following estir,lates 

exist for any solution of the equation. V, (Azri,:' - Y? (AU),," = f satisfying the boundary con- 

ditions: 
(U = I?“‘\ (i.zo = 0. (11x1 ” 7 mly:“)= (vlli,:’ -vy?uy,“ix’ /r=O -= 0, (a, 
Q <il 

namely: 

where p = rly2c ((I. I] and the monotonic function P (p) has the following properties: 

F (1) = ci > 1 ? - n-1 arccos 2n-‘, F (P) - L_ 0, p-0. 
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The dispsrsiorr Wpntion has the form (tx=-1) 
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ffo If, 3= ffL 31 (%L -!- Wi!J I, i= ‘yl. 31 - 6% II, 3 = PI, 3 

J-‘&b = %, b,g = 0, y = 0,1 . 

Lemma 3 (justification of the Stokes model). Let the right-hand sides of problem (2.5) (a), 
(b) have the properties fI,$ '-I WF' lo), Nf.3 E &!'-' (r,,,), yI,s f: i$?' (r,.,), vi,, S BF-' (r,,,). I = 0.1: 

CC E (--1,O). 

Then for pC (1,2'(1 - 7)) (a) , JIE (1, w) (b) a unique solution of each problem 

{D%$, DH) E L, (Q), {D’$, D2H} E V~,,-,3-,:, (S2) (a), {D4$, D*H) E Wi (52) (b) , 

exists and 

where 

(2.7) 

Proof. Let US consider the more complex case (a). We shall write the solution in the 

form V = 5; T $, H= p -; H,, with II +a 11~~4 - \I H, JIwpz .< C (~0 -+ I,~). Multiplying Eqs. (2.5) scalar 

by $' and GV' and applying the estimate (lo) of Lemma 2, we obtain 

Nr2 5 I -@m u;,‘) -7 (h* +;)I 

and, since for given a we can choose E so that Kz2 > C (m22 + n,*), it follows that 

// $ I/U?,* < C (rID + sic I- t:) (2.8) 

The uniqueness of the solution follows from estimate (2.8). Let (r: jd = g. Then 1g1G 

t (r10 + s," + il'). Let us write $ =3 i_To, qn I - a = g; 9 satisfies the condition (a) of Lemma 
2, and the estimate 3O(a) holds for it. But the first inclusion of V~,2_y_1pp --t ~~*cv-z’p-‘f -+ wp8 

is continuous (see the end of the proof of Lemma 41, and the second inclusion is completely 
continuous when pZ (I,?!(] -T)). Using the theory of linear equations /lo/, the estimate for 
$ and the property of compactness mentioned above, we obtain (2.61. Now the solvability 
follows everywhere from the fact that the solution of the homogeneous problem is trivial, 
which proves the lemma. 

Below we shall utilize the inclusion theorems of various metrics and measurements for the 
spaces 11-.B defined in 1'6:. 

Lemma 4 (on the estimate of the boundary integrals). Let the functions f E 11’,,1 (s-2). g. 
h f n; (Q). p E (1. wf. Then Everyone of these functions has a trace on the seqs1er.t (rI = a. 
2,~ [I). 11) and the following estimates hold: 

(2.11) 

(a) 

(b) 

‘lY 
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Proof. We shall use the multiplicative inequalities for the functions defined in Rn 

I~UBg'dCUfilZ_6_EIIIU~,, E>% I--r--e&O* i<9<=. (2.12) 
P 

This follows from inequality (7") of /6/, Sect.7.2 and the inclusion gt+c_ p r";, E>O /6/. 

Using (2.12) we readily obtain the estimate 

provided that we take into account the inclusions By"P(I'.!-H2 (r,) - C,(F,,), O<E,<E (Sect.6.3). 

Now, using the estimate (2.13) and the Holder inequality, we obtain 

1 
It< 

is 
mas 1.” (z,. q)ydr qp B C(F) II g s:;,;r;ri g u’~;;.~,,,, 

0 P 

Moreover, I, 5: C j; 2 l’Bc,cr ) and we have the inclusions 
P a 

Bp'(0)-. B;"+El (O), B$,El (r,), 1 > T E 2/g - lip T F, > rJ 

Using (2.12) we obtain 

(2.14) 

I]._ C(;); _l-lP-: i-t ,, ? i.P-l’P 
‘LpJ !’ - , Wpl,B, I o<.,<r 

which, combined with (2.14), yields relation (2.9). 
The estimate fcr the integrai I, follows from the two inequalities: 

I* < c (b) ! .t;;;-; 
. c .’ ‘&&,, p ‘IL&r,, ’ ‘1 mL,T,, 

I? < c (P) f 
..L2(2_r) c’ra’i” L:(T,)I h r?_Eo-oi 

and for the integral I, we have, using (i.Yl ii. = 01. 

'3 < /I” fL1 y(Ta) ““IILl (1_y) (raj \ -c (‘ (I, y) I, c:.‘-‘,, P ‘;,ta-“,, hi&,’ 
I’tl-Y)lr,) 

(O<f <y<“d. 

Let us further use inequality (9) of Sect.lO.1 of /6/, and note that the weight spaces 

I/ h llw, 
1,(,-Y) t-\, 

<CIi DC:,,:, 
1 ,1-v. y 

-I- ;1 h iL1 (,_,,I 

by definition, which proves the lemma. 

3. A priori estimates (AE) of the solutions O: the problem (1.1),(1.3), (1.4) (a) (b) 
fall into three groups for the expressions Dct.D3$.DJ$. Below we shall use the notation 
(1.5). (1.7) and begin by deriving AE I. Scalar multiplying equations (1.1) by J'=' and VP' and 
combining, we obtain 

vlm22 j v2n2 2 = VI (v’rF -- l$sl’: $,‘>ls-- (H, ~‘~‘)1~-- cf:, li’,‘) - (.i,, ~~‘1. 

Simple estimates using Lemma 2 (lo) yield 

Kr2 (a. E. v,,?) ' C I\,lm, -L (s 2. r) n,l. (a) (3.1) 

v,mz2 - v2nz2 1 C (s + 7) n2’). (c.1.s = 0). (b) 

To derive AE II we perform an analogous operation, multiplying the comoonents of the -_ _ 
vector grad (t=," T pv,*"). Considering case (a) first and taking into account the 
(2O) (a) of Lemma 2, we obtain 

NsZ _- (V&J - vz) (VrvU* f'>13 - (A"'-- !Ir', (I'=."- &,1")- 

(flu', $-I>" - p~,,")r~ - B (A',', +$z,'>?' - 

I J’“’ (lJz2” - B$,I”,,’ - VI’ (1’*1” - BV,I”),‘, A$) 

Using the second equation of (1.1) and the properties of 
(2.11) (a) when r1 = y, z2 = I. g = qV*", h = Vet"', 

f,,? and applying 
e = p,Z. we will write (this is the 

of the derivation of kAS II): 

1 (Hz', (?i'u,">z' I= I (~‘~a"', ykz") 1 Q v?C(%;) ni '(13 + nsjl-r!2 (j;Dl$jl D 
“l/u-y), Y 

1. n*) 

inequality 

(3.2) 

the inequality 
central stage 
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Integrating the trilinear form in (3.2) by parts and using the condition (1.4)(a), we obtain 

1, ” ;‘l.y’. I ‘*’ (” - 1) $‘! 1112 ,- (P - 1) (q+“‘i8)13 + CP - 1) (yx’\i’!,‘” - y,$ 1 y&J 
Let us obtain estimates for the principal terms. 

obtain 
Using the inequality (2.10) (k = I), we 

I &,‘, ($u’“)2> / ; c (6) n;*-EL)‘+* 

and taking into account (2,Y) (k = I), we find 

Substituting all the estimates into inequality (3.2) and neglecting higher-order terms, 
we obtain 

(3.3) 

In the same manner we derive 

Y11n3? _!_ VJ, 

C (c) (/?I, 
/$-:I 

The third grou;; cf a priori 
(i = 0) of Lemma 3, provided that 
of equation (1.2) 

(3.41 

estimates AZ III are obtained from the estimates (?.6), (2.i) 
we replace i-1' by the norm in L2 of the right-hand side 

4. The existence of solutions and passage to the limit. Below we shall prove 
the theorem of the existence of solutions of the flow problem in two formulations. We introduce 
a Hilbert space 

with the norm Ii a ’ hJ = ,; LIST ( equivalent tc ;, j~p. We also define a class cf functicns 

v" (0) -: {U 1 iii, .: ,!,> (!!l , -_ IJ -11: f r: ,I-,, y $)). y E (0, ‘#21 

Theorem 1. (the existence ci sclctior,s of the general problem!. Let the right-hand sides 
of FrGblem (1.1). (1.3). (1.4) (a) H!,,. ;'1,3 s Cz (r, 3). j,,? f 11s,'2 (!I) and let the parameters satisfy 

the conditions a = I--1,0).0 < y\‘l : vz. Then its solution $ E I':!), HF 1’:” exists and the 
following inequalities hold: 

where ;' - (0. F ([I)), and the function F (I)) is defined in Lemma 1. 

Proof. Writing the required function in the form v =qO -i_$ (qO satisfiez the conditions 

(1.3), (1.4) (a)), we will consider the operator A :dl,+ .V z,placing the functions qt. on the right- 
hand side of system (1.1) in one-to-one correspondence with the solution of the Stokes problem 

$2 (Lemma 3). We will show, in accordance with the Leray-Schauder principle /3/, that A is 
a completely continuous operator aqd the a priori estimate I/ $ (Inj, <K holds for any possible 

solution of Eqs.(l.l! with a multiplier i. .z to, 11. 
For any specified i., E can be chosen such, than when e = 1, the estimate (3.1) (a) 

yields 

and substituting the estimate (3.5)(a) into the inequality (3.3)(@ =l), we obtain 

v1 (rn,? - I,? + ?fa2) Q Y2 Y,C (s: r, s, i) (m, + n.#~~'* (m, + i3 + n3)?-y/? (4.3) 

Relation (4.1) easily follows from (4.2). (4.3). But by virtue of the estimate (3.5) (a) the 
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operator A transforms the set bounded in Al,, into a set bounded in vYc3), and hence compact 

in II& (Lemma 31, which proves the theorem. 

Theorem 2. (the existence of solutions of the NS equations). When VI - VP = v, the 
problem of flow (1.1), (1.3), (1.4) (a) has , under the conditions of Theorem 1, a solution with the 
estimates (V6 > 0) 

m2 -k n:, < c (r, s, t) v-l, Il*ll.M, i v-l !I all , G 
c (6; r, s, t) v-3-b’ 

WP 

II 041: I&;, _ + v-l 11 D*H IIF- < c (6; r, s, i) v-5-6 
29 G 

When v is sufficiently large (compared with rr s: t), the solution is unique. 

Proof. The above estimates are easily obtained, provided that the estimate in the space 
V' 
/lY 

(Lemma 1) is taken into account. The uniqueness can be proved using standard methods 

Passing totheGPE we introduce the classes of functions 

We shall call the 

u (Q) = {u 1 u E Iv** (Q): u I2 = uz’ 1, = uy’ I*, * = 0, 

u*’ 11 = 0) 
w (52) = Ill: I$ E w,* (R), q;, E W2’ (61); 
~:12=~~‘l,=$“‘I?.4=0). 
pair of functions 9'~ w(Q),n~ W:'*')(O) such that 

and VUE c' (L?), and the following relations hold: 

(4.5) 

the generalized solution of the problem of flow for the GPE. 

Theorem 3 (existence of solutions of the GPE). Let the functions fi,?. H,.$ satisfy 
the conditions of Theorem 1. Then a pair (3, n) exists satisfying (4.4), (4.5) with the esti- 
mates 

n, -; c (r, s. 1) y-1. I, .: c (6: r s q-5-c. 3 > t-s > 0. (4.6) 

Equations (4.5) represent the lisitlng case of !i.l), and the following estimates hold 
for the neglected terms (Y? = V. 6 > 0): 

11 v]ll'.T" /, I l'Y,C (6: r. s. 1) rp.z-*. 
,.. 

II \.1J'x'. II < (4.T) 
Y,I' (,6: T,S. i) \-j-b. 

Proof. We shall consider the seq.aence Y,"l_-, 0, n + m and another corresponding sequence 
of solutions represented by Theorem 1 with c = -1.~~ = v,vl = ~~('6). The inequality (3.3)(6 = 0) 
together with (4.2) yields 

l,rfl'v,m, 7 I, < c (6: r. s. i) v;5-6 

which readily yields the relations (4.6). (4.i). 
Now we write, in place of Eqs.Cl.11, (uE c(n)) 

+i iy$l” , U,‘) - (v~:d~” T n:;‘*, u,‘) = ($;‘Ayc’,I - ,&, u,‘) (4.8) 

v:' ) (lgy, z$‘) - (v&!” - ,?$“‘, &)s - (qp’&$ - Il. U”‘) 

and note that by virtue of (4.6; the set {V) _- n-r,- is bounded, and therefore weakly compact 

in r*,'(Q) (which should naturally be regarded as a Hilbert space). This implies that a sequence 
q(m): *Cm) +$ exists weakly in kV(Q). Then the first terms of (4.8) will be equal to zero 
in the limit by virtue of the estimates (4.71, and we arrive at relations (4.5). The boundary 
conditions hold by virtue of the smoothness established here, and this proves the theorem. 

Below we give a conditional result regarding the uniqueness of the solutions of the GPE 
in the class 

Theorem 4 (on the uniqueness of solutions of the GPE). For sufficiently large v there 
exists at most one solution in the class TV El, furnished by Theorem 3 and satisfying the 
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supplementary condition -$*' = L.1 (y) E c, (T,). 

Proof. Writing the difference between two solutions as 7. = $1 - $I and putting u = Xf 
we easily obtain from (4.5) 

The expression within the braces is not less than zero, and we therefore have 

f&2 .: li (y) Iin?, li (y)+ 0, v+oO 

which completes the proof. 

Theorem 5 (the classical solution of the NS equations). Under the conditions of 
Theorem 1 @I.3 = 0) the problem (l.l), (1.3) (1.4) has a solution @E c,,, (W Hc c,,, (4). cx= 
(0. 1)with the estimates (rn? j n2 = !?12. m3 + 13 + ns = Ma1 C = C (r, s. W), e > Y: 

M? 1 cv-1, ]Jf, - v-1 ” /j !I 
W: 

’ c (F) v-3-p, I/ \I’ jW1 /; c (E) V‘“. c 

For sufficiently large v the solution is unique. 

Proof. A priori estimates of the solutions of the problem in question follow from (3.4) 
taking (3.5) (b) into account. The existence of the solutions is established in the same 
manner as in Theorem 1, and the uniqueness as in Theorem 2. The relation y E iv,' follows 
from (3.5) (b), in which case the estimate (2.71 when 1 = 1 and inclusion W2b (Q) - c,,, lead 

to the conclusion that the solution is classical, which completes the proof. 
The results given here are obtained ion the basis of new estimate of the boundary integrals 

under the conditions of the flow problem, eliminating the presence of the "boundary layers" 
at the side cross-sections, which leads to an acceptable estimate of the norm of the velocity 
gradient. 

The author thanks the participar.ts of the seminars run by L.V. Ovsyannikov and the late 
N.N. Yanenko for their help. 
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