6. HALI M.G., Vortex breakdown. In: Annual Review of Fluid Mechanics. Vol.4, Palo Alto: Ann Revs, 1972.
7. BOSSEL H.H., Vortex computation by the method of weighted residuals using exponentials. AIAA Journal, Vol.9, No.10. 1971.
8. NEIIAND V.YA., On the theory of detachement of a laminar boundary layer in supersonic flow. Izv. Akad. Nauk SSSR, MZhG, No.4, 1969.
9. RUBAN A.I. and SYCHEV V.V., Asymptotic theory of detachment of the laminar boundary layer in an incompressible fluid. Uspekhi mekhaniki, Vol.2, No.4, 1979.
10. BATCHELOR G.K., Axial flow in trailing line vortices. J. Fluid Mech., Vol.20, pt. 4, 1964.
11. LESSEN M., SINGH P.I. and PAILLET F., The stability of a trailing line vortex. Pt. 1, Inviscid theory. J. Fluid Mech., Vol.63, pt.4, 1974.
12. MAGER A., Dissipation and breakdown of a wing-tip vortex. J. Fluid Mech., Vol.55, pt.4, 1972.
13. GRABOWSKI W.I. and BERGER S.A., Solutions of the Navier-Stokes equations for vortex breakdown. J. Fluid Mech., Vol. 75, p.3, 1976.
14. MOISEEV N.N., Asymptotic Methods in Non-linear Mechanics. Moscow, Nauka, 1981.

Translated by L.K.

PMM U.S.S.R.,Vol.49,No.2,pp.171-178,1985
0021-8928/85 \$10.00+0.00
Printed in Great Britain
Pergamon Journals Ltd.

STATIONARY MODEL OF THE GENERALIZED PRANDTL EQUATIONS AND THE PASSAGE TO THE LIMIT WITH RESPECT TO LONGITUDINAL VISCOSITY IN THE NAVIER-STOKES EQUATIONS*

V.M. SOLOPENKO

Abstract

It is shown that the generalized Prandtl equations (GPE) represent a limiting case of the Navier-Stokes (NS) equations when the "longitudinal" viscosity tends to zero. An estinate for the neglected terms is obtained and a theorem of existence proved for the GPE. The theorem was established earlier / / for the case of homogeneous conditions.

The passage to the limit of the non-steady Euler equations is carried out in $/ 2 /$ under the assumption that the vorticity vanishes on the solid surfaces. Although the assumption is not physically justified, it enables the integrals over the solid surfaces to be estimated easily.

It is well-known that the use of the Hopf truncation for the NS equations in the inhomogeneous stationary problemof flow, leads to an estimate of the nor of the velocity gradient depending exponentially on viscosity $/ 2,3 /$. We note that no such difficulty arises in the case of the non-stationary problem, nor in the Cauchy problem $/ 4,5 /$. In the first case the "smooting" may take place with time, and in the second case there are no boundary effects at all.

The problem of flow with various boundary conditions specified in terms of the stream and Bernoulli functions, free from the above drawbacks, is studied below.

1. Formulation of the problem. The flow takes place within the square $\Omega=(0.1) \times$ $(0,1)$. We denote the segment $x=0$ by Γ_{1} and number the remaining sides $\Gamma_{2,3}$. 4 in an anticlockwise direction $\Gamma_{1,3}$ denote the inflow and outflow segments respectively, and $\Gamma_{2,4}$ are rigid walls. Introducing the Bernoulli function $H=p+1 / 2\left(\psi_{y}^{\prime}\right)^{2}+1 / 2\left(\psi_{x}^{\prime}\right)^{2}+\Pi$ (the notation is standard), we consider the system of equations

$$
\begin{align*}
& \left(v_{1} \psi_{x{ }^{\prime \prime}}+v_{2} \psi_{\nu^{\prime \prime}}\right)_{x^{\prime}}+H_{y}^{\prime}=\psi_{y}{ }^{\prime} \Delta \psi+f_{2}, \quad 0 \leqslant v_{2} \leqslant v_{2} \tag{1.1}\\
& \left(v_{1} \psi_{x x^{\prime}}+v_{2} \psi_{y^{\prime}}\right)_{y^{\prime}}-H_{x}^{\prime}=-\psi_{x}{ }^{\prime} \Delta \psi-f_{1}, \quad v_{2}>0
\end{align*}
$$

where $f_{1,2}$ are the components of the mass force vector. When $v_{1}=v_{2}=v$, we have the NS equations and when $v_{1}=0$, we have the GPE. Eliminating H, we can rewrite (1.1) in the following equivalent form:

$$
\begin{equation*}
v_{1}(\Delta \psi)_{x^{2}}^{\sim} \div v_{2}(\Delta \psi)_{y^{1}}^{\prime}=-\psi_{x}^{\prime}\left(\Delta \psi_{y}^{\prime}+\psi_{v}^{\prime}(\Delta \psi)_{x}^{\prime} \div f_{2 x}^{\prime}-f_{1 y}^{\prime} .\right. \tag{1.2}
\end{equation*}
$$

*Priki.Matem.Mekhan.,49,2,227-235,1985

The boundary conditions of adhesion have the form

$$
\begin{equation*}
\left.\psi\right|_{2}=\psi_{y}^{\prime} l_{2,4}=0,\left.\quad \psi_{x}^{\prime}\right|_{4}=0 \tag{1.3}
\end{equation*}
$$

Two types of conditions on $\Gamma_{1, s}$ corresponds to two problems under consideration，but the Bernoulli function H is given in both cases：

$$
\begin{aligned}
& \left.H\right|_{i}=H_{i}(y) ;\left.\quad\left(\psi_{x^{2}}{ }^{\prime}+\alpha \psi_{v^{\prime}}{ }^{\prime \prime}\right)\right|_{i}=\gamma_{i}(y), \quad \alpha<1, i=1,3 \\
& \text { (problem A) } \\
& \left.K\right|_{i}=H_{i}(y) ; \quad-\left.\psi_{x}^{\prime}\right|_{i}=v_{i}(y), \quad\left(v_{i}=v_{i y}^{\prime}=0, y=\right. \\
& 0,1), \quad i=1,3(\text { problem B). }
\end{aligned}
$$

The condition $\alpha<1$ is necessary for the problem to be Shapiro－Lopatinskii correct． The case $\alpha=-1$ corresponds to specifying the tangential stress．We note that we cannot replace the last condition of（1．3）by $\left.\psi\right|_{4}=g$ ，since the problem will then become over－ defined and from the physical point of view the flow rate is related primarily to the values of $H_{1,3}$ ．

Let us introduce the notation for the norms of the right－hand sides of the problem

$$
\begin{equation*}
r=\left\|l_{1} W_{i^{2}(\Omega)}, \quad s=\right\| H_{i}\left\|_{C_{2}\left(\bar{\Gamma}_{1}, e^{\prime}\right)} \quad t=\right\| \gamma_{i} \|_{C_{2}\left(\bar{\Gamma}_{1,3}\right)} \tag{1.5}
\end{equation*}
$$

The scalar product in $L_{2}(\Omega)$ can be written as $(a, b) .\|a\| \equiv(a, a)^{1 / 1}$ ，and we use the angle brackets for the boundary integrals

$$
\langle a, b\rangle_{j}^{i}=\int a b d \Gamma_{i}-\int a b d \Gamma_{j}
$$

We shall apply the anisotropic Sobolev space $H_{F}^{\left(i_{i}, \prime_{i}\right)}$ ，and Besov space $B_{p i}^{\left(\tau_{1}, T_{2}\right.}$ ，using the notation of／6／．In addition，we shall fina the weight space $f_{p, B}(Q)(/ 7 /$ ，Sect．10）with the norm

$$
\begin{equation*}
u \mid=\left(\left.\sum_{|\alpha|=0}^{\infty} \sum_{0} r^{2-i-1 a| |} D^{p} u\right|^{p} d \Omega\right)^{1 / t} \tag{1,6}
\end{equation*}
$$

useful，where r is a smooth function equal in the neighbourhood of any angle point Ω ，to the distance to it．We shall regard D^{n} as an n－th order arbitrary differential operator， We define the following seminorms：

$$
\begin{align*}
& N_{2}{ }^{2}\left(\alpha, \varepsilon, r_{2,2}\right)=r_{1}(1-\varepsilon: 1-\alpha: 2) \psi_{2} \|^{2}-\left(r_{2}-\right. \tag{1.7}\\
& \left.x v_{1}\right)\left\|\psi_{x 女}\right\|^{2}-\left(v_{2}-v_{1}: 1-\alpha: 2 \varepsilon\right)\left\|\downarrow:^{2}\right\|^{2} \\
& \lambda_{3}{ }^{2}\left(\alpha, \beta, \varepsilon, v_{1,2}\right)=v_{1} \psi_{A_{3}}^{\prime \prime \prime}{ }^{2}-\mid v_{1} \beta-v_{2}-\varepsilon(1- \\
& \text { 天) } \left.\left(v_{1} \beta-v_{2}\right) 2 \mid\right] \mid \psi_{\left.x_{4}\right\}_{1}}^{2}+\left[v_{2} \beta-v_{2}-v_{1} \beta-(1-\right. \\
& \text { a) } \left.\left(v_{1} \beta-v_{2}\right)\right\} \psi_{x}=1 i-\left[r_{2} \beta-j 11-\alpha_{2}\right)\left(\gamma_{1} \beta-\right. \\
& \left.\left.\psi_{\Omega}\right) 2 \varepsilon!\right] \mid \psi_{y}{ }^{\prime \prime \prime} \| .
\end{align*}
$$

2．Auxilliary assumptions．We first establish the properties of smoothness．

Lemma 1 （concerning the behaviour of solutions at the angle points）．Let a finite func－ tion $!=W_{2}^{01}(K)$ be defined within the angle $K(x \geqslant 0, y>0)$ ．Then the following estiriates exist for any solution of the equation $v_{1}\left(\Delta u \|_{2}:^{\prime \prime}-v_{2}(\Delta u)_{u}:=f\right.$ satisfying the boundary con－ ditions：

$$
\begin{aligned}
& \left.\left(u=u_{y}^{\prime}\right)\right|_{y=0}=0, \quad\left(u_{x:}^{\prime \prime}+\alpha u_{y: \prime}^{\prime \prime}\right)=\left(v_{1} u_{x} "^{\prime \prime}-\left.\left.v_{2} u_{y^{\prime \prime}}\right|_{x}\right|_{x=0}==0\right. \\
& \alpha=0
\end{aligned}
$$

$$
\begin{equation*}
\left.\left(u=u_{i}^{\prime}\right)\right|_{=0}=0 .\left.\quad\left(u_{x}^{\prime}=u_{x^{3}}{ }^{\prime \prime \prime}\right)\right|_{x=0}=0 \tag{b}
\end{equation*}
$$

namely：
where $\rho=v_{1} v_{2} \in(0.1]$ and the monctonic function $\varepsilon(\rho)$ has the following properties：

$$
\varepsilon(1)=\varepsilon_{1}>1_{2}-\pi^{-1} \arccos 2 \pi^{-1}, \quad \varepsilon(\rho) \rightarrow+0, \quad \rho \rightarrow 0 .
$$

 ing off by it and introducing the operators

$$
\begin{aligned}
& D=d d \varphi, \quad l=D^{2}+(\lambda-2)^{2} \\
& l_{\mu}=(1-\mu \cos 2 \varphi) D^{2}+2 \mu \sin 2 \varphi(\lambda-1) D+\lambda_{1} \cos 2 \varphi(2-\lambda)+\lambda^{2}
\end{aligned}
$$

we arrive, in case (a) at the following problem in the angle k :

$$
\begin{align*}
& H_{\mu} \tilde{\tilde{L}}(\varphi)=0, \quad \text { 立 }(0)=0 \tag{2,2}\\
& \bar{u}^{\prime \prime}(\pi / 2)+\alpha^{\prime} \lambda^{\prime}{ }^{\prime \prime}\left(\pi^{\prime 2}\right)=\rho^{\prime \prime \prime}(\pi / 2)+\left[\lambda^{2}-3 \lambda(1-\rho)+2(1-\rho)\right] \times \bar{u}^{\prime}(\pi / 2)=0 .
\end{align*}
$$

The following system of functions is the basis of the kernel of the operator of (2,2):

The cispersion equation has the form $(a:=-1)$
and its limiting case $f(11$ is identical with the equation

$$
\begin{equation*}
-\lambda \cos \lambda \pi=2 \lambda^{2}-3 \lambda+2 \tag{2,4}
\end{equation*}
$$

generated by the basis of the kexnel of the opexator $\boldsymbol{u}_{\mathrm{w}}$ In case (2.4) we find, attex viriting
 of (2.3) shows that the strip Red $(2,2 \div \varepsilon(p)$ does not contain any eigenvalues of problen (2.2). Now we can apply the theory developed in $/ 7 /$, ana using corollary (7.1) from $/ 7 /$, we

(b) we artive at relations (2.2) in which the last two conditions have been replaced by fir
 required smoothness of the solution $/ 8 /$ and leads to the estimate (b) which completes the proof.

 $\left.\psi_{x^{*}} /\right)_{1-2}=0 \quad$ is coercive in the sense that the fompwing inegualities fusing the notetion (2, 7)) hola:

$$
\begin{align*}
& \mid v_{1} m_{2}^{2} \div v_{2} n_{3}^{*}
\end{align*}
$$

Proof. (10). Integrating by parts we obtain, in case (a), the boundary integral $l_{1}=v_{1}$
 last equation Young's anequaiity, we obtain the required estimate. (20, mis is proved in a similar mannex. 3°. This is established with help of local graphs and suboranate decompom sition of the unt y (see e.9. $79 /$ sect.5.1). We use Lemua in the neighbourhood of the angie points, ant sumation completes the derivation of the estimates, which in turn proves the lemma.

Let us investigate the flow of fluid through the region in question in the stokes approxi* mation. We will seek the paix of functions fy. H, representing the solution of the problem

$$
\begin{align*}
& \left.\psi\right|_{2}=\left.\psi_{4}{ }^{\prime}\right|_{2,4}=\left.\psi_{x}{ }^{\prime}\right|_{4}=0 \quad\left\{\left.\left(\psi_{x^{\prime \prime}}^{\prime \prime}+x \psi_{y} y^{\prime \prime}\right)\right|_{1,3}=\gamma_{1,3}(y) \quad\right. \text { (a) } \tag{2.7}\\
& \left.H\right|_{h_{3}, 3}=H_{z_{3}}(y) \quad \begin{cases} \\
-\left.\psi_{x^{\prime}}\right|_{h_{3}}=v_{1}, y \\
(y) & \text { (b) }\end{cases}
\end{align*}
$$

$$
\begin{aligned}
& \left.H_{0}\right|_{1,3}=H_{1,3} \quad\left(\psi_{a x^{2}}-a \psi_{a, y}\right)_{1,3}^{\prime}=\gamma_{1,3} \quad-\psi_{b x}^{\prime} h_{1,3}=v_{1.3} \\
& \psi_{\mathrm{a}, \mathrm{~b}}=\psi_{\mathrm{a}, \mathrm{~b}}^{\prime}=0, \quad y=0,1 .
\end{aligned}
$$

Lenma 3 (justification of the Stokes model). Let the right-hand sides of problem (2.5)(a), (b) have the properties $f_{1,2} \in \mathcal{W}_{p}^{1+1}(\Omega), \quad H_{1,3} \in B_{p}^{2, j+1}\left(\Gamma_{1,3}\right), \gamma_{1,3} \in B_{p}^{p+1}\left(\Gamma_{1,3}\right), \quad i_{1,3} \in B_{j}^{1 ; 2+1}\left(\Gamma_{1,3}\right) . i=0,1 ;$ $\alpha \in(-1,0)$.
Then for $p \models\left(1,2^{\prime}\left(1-\gamma^{\prime}\right)(a), p \models(1, \infty)(b)\right.$ a unique solution of each problem

$$
\left\{D^{3} \psi, D H\right\} \equiv L_{p}(\Omega),\left\{D^{4} \psi, D^{2} H\right\} \equiv V_{p, 2-\gamma ; p}^{0}(\Omega)(\mathrm{a}),\left\{D^{4} \psi, D^{2} H\right\} \subseteq W_{\nu}{ }^{l}(\Omega)(\mathrm{b})
$$

exists and

$$
\begin{align*}
& C\left(v_{1} / v_{2}\right) \quad\left(r_{1}{ }^{0}-s_{1}{ }^{c}-t_{1}{ }^{c}\right) \tag{2,6}\\
& v_{2} \psi_{W_{p}^{4-1}}+\| H H_{p}^{2-1} \leqslant C\left(v_{1}, v_{2}\right) \cdot\left(r_{2}^{l}+s_{1}^{l}+v_{1}^{l}\right) \tag{2.7}
\end{align*}
$$

where

Proof. Let us consider the more complex case (a). We shall write the solution in the form $\psi=\bar{\psi}+\psi_{a}, H=\bar{H} \div H_{0}$, with $\left\|\psi_{0}\right\| w_{p^{4}}+\left\|H_{0}\right\| w_{p^{2}} \leqslant C\left(s_{1}{ }^{0}+t_{1}{ }^{0}\right)$. Multiplying Eqs. (2.5) scalarly by $\bar{\psi}_{x}{ }^{\prime}$ and $\bar{\psi}_{y}^{\prime}$ and applying the estimate $\left(1^{0}\right)$ of Lemma 2 , we obtain

$$
N_{2}^{2} \leqslant\left|-\left(\bar{y}_{2}, \bar{\psi}_{x}\right) \div\left(\bar{f}_{1}, \bar{\psi}_{v}^{\prime}\right)\right|
$$

and, since for giver a we can choose ε so that $N_{2}{ }^{2} \geqslant C\left(m_{2}{ }^{2}+n_{2}{ }^{2}\right)$, it follows that

$$
\begin{equation*}
\|\psi\|_{w_{2}} \leqslant C\left(r_{1}{ }^{0}+s_{1}{ }^{0}+t_{1}{ }^{\circ}\right) . \tag{2.8}
\end{equation*}
$$

The uniqueness of the solution follows from estimate (2.8). Let $\left.\bar{\psi}\right|_{4}=g$. Then $|g| \leqslant$ $C\left(r_{1}{ }^{\circ}+s_{1}{ }^{\circ}+t_{1}\right)$. Let us write $\bar{\psi}=\bar{\psi}+\bar{\psi}_{0},\left.\bar{\psi}_{0}\right|_{4}=g ; \bar{\psi}$ satisfies the condition (a) of Lemma 2 , and the estimate $3^{\circ}(a)$ holds for it. But the first inclusion of $V_{p, 2-\gamma-2 ; p}^{4} \rightarrow B_{p}^{3+(\gamma-2, p-1)} \rightarrow W_{p}{ }^{8}$ is continuous (see the end of the proof of Lemma 4), and the second inclusion is completely continuous when $p \equiv(1,2(1-\gamma)$. Using the theory of linear equations $/ 10 /$, the estimate for ψ and the property of compactness mentioned above, we obtain (2.6). Now the solvability follows everywhere from the fact that the solution of the homogeneous problem is trivial, which proves the lemma.

Below we shall utilize the inclusion theorems of various metrics and measurements for the spaces $I V$. B defined in $/ 6 /$.

Lemma 4 (on the estimate of the boundary integrais). Let the functions $j \in W_{v}{ }^{2}(\Omega), g$, $h \equiv W_{T}^{1}(\Omega), p \in(1, \infty)$. Then everyone of these functions has a trace on the segment $\left(x_{1}=a\right.$. $x_{2} \in(0,11)$ and the following estimates hold:

$$
\begin{align*}
& \varepsilon>0, \quad 1<q<\infty, \quad 0>1 p-2 q-\varepsilon \geqslant-1, \quad p \geqslant q, \quad 0 \leqslant k \leqslant 1
\end{align*}
$$

$$
\begin{align*}
& I_{3}=\int_{0}^{1} \lg h \| x_{1}=a d x_{2} \tag{2.11}
\end{align*}
$$

Proof. We shall use the multiplicative inequalities for the functions defined in R^{n}

$$
\begin{equation*}
\|f\|_{B_{q} r} \leqslant C\|f\|_{L_{q}}^{1-r-\varepsilon}\|f\|_{W_{q}}^{-+\varepsilon}, \quad \varepsilon>0, \quad 1-r-\varepsilon \geqslant 0, \quad 1<q<\infty . \tag{2.12}
\end{equation*}
$$

This follows from inequality ($7^{\prime \prime}$) of $/ 6 /$, sect. 7.2 and the inclusion $B_{p}^{k+\varepsilon} \rightarrow W_{p}^{k}, \varepsilon>0 / 6 /$. Using (2.12) we readily obtain the estimate
provided that we take into account the inclusions $B_{p}^{\varepsilon_{p}+1 / p}\left(\Gamma_{a}\right) \rightarrow H_{\alpha}^{\varepsilon_{1}}\left(\Gamma_{a}\right) \rightarrow C_{0}\left(\bar{\Gamma}_{a}\right), 0<\varepsilon_{1}<\varepsilon \quad$ (Sect.6.3). Now, using the estimate (2.13) and the Hölder inequality, we obtain

Moreover, $I_{1} \leqslant C\|g\|_{B_{j}^{\varepsilon_{1}\left(\Gamma_{a}\right)}}$ and we have the inclusions

$$
B_{q}^{r}(\Omega) \longrightarrow B_{f}^{1 p+\varepsilon_{1}}(\Omega) \longrightarrow B_{j}^{\varepsilon_{1}}\left(\Gamma_{a}\right), \quad 1 \geqslant r=2 / q-1 / p+\varepsilon_{1}>0 .
$$

Using (2.12) we obtain
which, combined with (2.14), yields relation (2.9).
The estimate for the integral l_{2} follows from the two inequalities:
and for the integral J_{3} we have, using $\left\{2, y_{1}(k=0\right.$.

$$
\begin{aligned}
& \left(0<\varepsilon<\gamma \leqslant \leqslant^{2} / 2\right) \text {. }
\end{aligned}
$$

Let us further use inequality (9) of Sect. 10.1 of $/ 6 /$, and note that the weight spaces
by definition, which proves the lemma.
3. A priori estimates (AE) of the solutions of the problem (1.1). (1.3), (1.4) (a) (b) fall into three groups for the expressions $D^{2} \psi \cdot D^{3} \psi$. $D^{4} \psi$. Below we shall use the notation (1.5), (1.5) and begin by deriving AE I. Scalar multiplying equations (1.1) by ψ_{x}^{\prime} and ψ_{y}^{\prime} and combining, we obtain

$$
v_{1} m_{2}^{2}+v_{2} n_{2}^{2}=v_{1}\left\langle\psi_{a^{\prime}}{ }^{\prime \prime}-\psi_{y_{2}}{ }^{\prime \prime}, \psi_{x}^{\prime}\right\rangle_{1}^{3}-\left\langle H, \psi_{y^{\prime}}\right\rangle_{1}^{3}-\left(f_{2}, \psi_{x}^{\prime}\right) \div\left(f_{1}, \psi_{v}^{\prime}\right)
$$

Simple estimates using Lemma 2 (1^{0}) yield

$$
\begin{align*}
& N_{2}^{2}\left(\alpha, \varepsilon, v_{1,2}\right)-C\left(v_{1} t m_{2}-(s+r) n_{2} \mid\right. \tag{a}\\
& v_{1} m_{2}^{2}-v_{2} n_{2}^{2}-C(s \div r) n_{2}^{\prime \prime} . \quad\left(v_{1,3}=0\right) \tag{3.1}
\end{align*}
$$

To derive AE II we perform an analogous operation, multiplying the components of the vector $\operatorname{grad}\left(\psi_{x^{\prime}}{ }^{\prime \prime}-\beta \psi_{b^{\prime}}{ }^{\prime \prime}\right)$. Considering case (a) first and taking into account the inequality (20) (a) of Lemma 2, we obtain

$$
\begin{align*}
& N_{3^{2}}{ }^{2}\left(\nu_{1} \beta-v_{2}\right)\left\langle\psi_{x y^{\prime \prime}}{ }^{\prime \prime}, \gamma^{\prime}\right\rangle_{1}{ }^{3}-\left(f_{1_{y}}{ }^{\prime}-f_{z_{x}}{ }^{\prime}, \psi_{x} x^{\prime \prime}-\beta \psi_{y^{\prime}}{ }^{\prime \prime}\right)- \tag{3.2}\\
& \left\langle H_{v^{\prime}}{ }^{\prime}, \psi_{x^{\prime}}{ }^{\prime \prime}-\beta \psi_{y^{\prime}}{ }^{\prime \prime}\right\rangle_{y^{3}}{ }^{3}-\beta\left\langle H_{x}{ }^{\prime}, \psi_{x^{\prime}}{ }^{\prime \prime}\right\rangle_{2}{ }^{\prime}- \\
& \left(\psi_{y}^{\prime}\left(\psi_{x^{\prime}}^{\prime \prime}-\beta_{v^{\prime}}\right)_{x^{\prime}}-\psi_{x}^{\prime}\left(\psi_{x}{ }^{\prime \prime}-\beta \psi_{y^{\prime \prime}}\right)_{y^{\prime}}, \Delta \psi\right) .
\end{align*}
$$

Using the second equation of (1,1) and the properties of $f_{1,2}$ and applying the inequality (2.11) (a) when $x_{1}=y, x_{2}=x, g=\psi_{\nu^{\prime}}{ }^{\prime \prime}, h=\psi_{y^{\prime}} \prime^{\prime \prime \prime}, \varepsilon=\gamma_{1}$, we will write (this is the central stage of the derivation of $A E I I)$:

$$
\left|\left\langle H_{x}^{\prime}, \psi_{y^{\prime \prime}}\right\rangle_{2^{4}}\right|=\left|\left\langle\psi_{y y^{\prime \prime}}^{\prime \prime}, \psi_{y^{\prime \prime}}\right\rangle\right| \leqslant v_{2} C(;) n_{2}^{\gamma \cdot 2}\left(l_{3}+n_{3}\right)^{1-v_{1 / 2}}\left\{\| D^{4} \psi_{v_{1 /(1-\gamma), \gamma}^{0}} \div n_{3}\right) .
$$

Integrating the trilinear form in (3.2) by parts and using the condition (1.4) (a), we obtain

$$
\left.\left.{ }^{1} \because\left\langle\|_{y}^{\prime},\right| \because(x-1) \psi_{y} y^{\prime \prime}\right]^{2}-(\beta-1)\left(\psi_{y^{\prime}}\right)^{2}\right\rangle_{x^{3}}^{3}+(\beta-1)\left(\psi_{x}^{\prime} \psi_{y^{\prime \prime}}^{\prime \prime}-\psi_{y}^{\prime} \psi_{x}^{\prime \prime}, \psi_{x_{y}^{\prime},}\right)
$$

Let us obtain estimates for the principal terms. Using the inequality $(2.10)(k=1)$, we obtain

$$
\left|\left\langle\psi_{y}^{\prime},\left(\psi_{y^{2}}{ }^{\prime \prime}\right)^{2}\right\rangle\right|=C(\delta) n_{2}^{\prime}-\delta L_{3}^{\phi_{i}+\delta}
$$

and taking into account $(2,9)(k=1)$, we find

Substituting all the estimates into inequality (3.2) and neglecting higher-order terms, we obtain

$$
\begin{align*}
& C\left(\delta_{1} n_{2}^{x}=-1_{3}+{ }^{+}\left(n_{2}^{2}+-|1-\beta| i_{3}^{t}\right) \div C(r, s, t)\left(n_{2}-1\right) .\right. \tag{3.3}
\end{align*}
$$

In the same manner we derive $A E I I$ (b):

$$
\begin{align*}
& v_{1} m_{3}^{2}+v_{2} l_{3}^{2}-\beta v_{2} n_{3}^{2}-\beta v_{2} C(\varepsilon) n_{2}^{1 /-\varepsilon}\left(n_{3}+l_{3}\right)\|\psi\|_{1}^{1} h^{4}+ \tag{3.4}\\
& C(\varepsilon)\left(m_{3}-n_{2}\right)^{2-\varepsilon}\left[\beta\left(m_{3}-l_{3}+n_{3}\right)^{1-\varepsilon}+|1-\beta|\left(m_{3}+\right.\right. \\
& \left.l_{3}\right)^{1-s]} .
\end{align*}
$$

The third group of a priori estimates AE III are obtained from the estimates (2.6), (2.7) ($l=0$) of Lemma 3, provided that we replace r_{1}^{c} by the norm in L_{2} of the right-hand side of equation (1.2)
4. The existence of solutions and passage to the limit. Below we shall prove the theorem of the existence of solutions of the flow problem in two formulations. We introduce a Hilbert space

$$
\begin{aligned}
& M_{\alpha}=\left\{\psi\left|\psi=W_{a}^{3}(\Omega), \psi l_{\Omega}=\psi_{i}^{\prime}\right|_{4}=\left.\psi_{y}\right|_{2}=0,\right. \\
& \left(Y_{x 2^{\prime \prime}}-x y_{1}, 2^{\prime \prime}\right)_{1,:}=0
\end{aligned}
$$

with the norm $\|\cdot\| M_{\alpha}=\| D^{3} \psi_{\text {: }}$ equivalent to $\left\|\|_{\text {a }}\right.$. We also define a class of functions

$$
V_{\gamma}^{(\beta)}(\Omega)=\left\{u \mid D_{u}^{*}=L_{2}(\Omega), D^{-1} u \equiv \Gamma_{1(1-y, \gamma}^{\bullet}(Q)\right\}, \gamma \in\left(0,1_{2}\right\}
$$

Theorem 1. (the existence of solutions of the general problem; Let the right-hand sides of problem (1.1). (1.3). (1.4) (a) $H_{1,3} \cdot \ddot{i}_{1,3} \cong C_{2}\left(\Gamma_{1,3}\right), i_{1,2} \equiv W_{2}{ }^{c 2}(\Omega)$ and let the parameters satisfy the conditions $\alpha=(-1,0), 0<v_{1} \therefore v_{2}$. Then its solution $\psi \cong \Gamma_{Y}^{(3)}, H=V_{i}^{(1)}$ exists and the following inequalities hold:

$$
\begin{align*}
& \text { C (r:r.s. f) } \gamma_{1}^{-1} r_{2}^{-1} \tag{4.1}
\end{align*}
$$

where $\gamma \equiv(0 . \varepsilon(r))$, and the function $\varepsilon(\rho)$ is defined in Lenma 1.
Proof. Writing the required function in the form $\psi=\psi_{0}+\bar{\psi} \psi_{0}$ satisfies the conditions (1.3),(1.4) (a)), we will consider the operator $A: M_{a} \rightarrow M_{x}$, placing the functions $\bar{\psi}_{1}$ on the righthand side of system (1.1) in one-to-one correspondence with the solution of the Stokes problem $\bar{\psi}_{2}$ (Lemma 3). We will show, in accordance with the Leray-Schauder principle $/ 3 /$, that A is a completely continuous operator and the a priori estimate $\|\psi\|_{N_{\alpha}} \leqslant K$ holds for any possible solution of Eqs.(1.1) with a multiplier $\lambda .=[0,1]$.

For any specified $3, \varepsilon$ can be chosen such, than when $\beta=1$, the estimate (3.1) (a) yields

$$
\begin{equation*}
\mathfrak{V}^{\prime} \overline{v_{1} / v_{2}} m_{2}+n_{2} \leqslant C(r, s, t) v_{2}^{-1} \tag{4.2}
\end{equation*}
$$

and substituting the estimate (3.5) (a) into the inequality $(3.3)(\beta=1)$, we obtain

$$
\begin{equation*}
v_{1}\left(m_{3}^{2}-l_{3}^{2}+n_{3}^{2}\right) \leqslant v_{2} / v_{1} C(\gamma: r, s, t)\left(m_{2}+n_{2}\right)^{1+\gamma / 2}\left(m_{3}+i_{3}+n_{3}\right)^{-\gamma / 2} . \tag{4.3}
\end{equation*}
$$

Relation (4.1) easily follows from (4.2). (4.3). But by virtue of the estimate (3.5) (a) the
operator A transforms the set bounded in $M_{\alpha,}$ into a set bounded in $V_{\gamma}{ }^{(3)}$, and hence compact in M_{α} (Lemma 3), which proves the theorem.

Theorem 2. (the existence of solutions of the NS equations). When $v_{1}=v_{2}=v$, the problem of flow (1.1), (1.3), (1.4) (a) has, under the conditions of Theorem 1 , a solution with the estimates $(\forall \delta>0)$

$$
\begin{aligned}
& m_{2}+n_{2} \leqslant C(r, s, t) v^{-1},\|\Psi\|_{M_{\alpha}}+v^{-1}!H \|_{W_{2}^{1}} \leqslant \\
& C(\delta ; r, s, t) v^{-3-0^{\circ}} \\
& \left\|D^{\mathbf{4}} \psi\right\|_{v_{2,-}^{0}}^{0}+v^{-1}\left\|D^{2} H\right\|_{v_{2, \xi}} \leqslant C(\delta ; r, s, t) v^{-b-t}
\end{aligned}
$$

When v is sufficiently large (compared with r, s, t), the solution is unique.
Proof. The above estimates are easily obtained, provided that the estimate in the space $V_{2, \varepsilon_{1}}^{\circ}$ (Lemma 1) is taken into account. The uniqueness can be proved using standard methods /1/.

Passing to the GPE we introduce the classes of functions

$$
U(\Omega)=\left\{u\left|u \in W_{2}^{2}(\Omega) ; u\right|_{2}=\left.u_{x}^{\prime}\right|_{4}=\left.u_{y}^{\prime}\right|_{2,4}=0\right.
$$

$$
\left.\left.u_{x}^{\prime}\right|_{1}=0\right\}
$$

$$
W_{(\Omega)}^{l_{1}}=\left\{\psi \mid \psi \in W_{2}^{2}(\Omega), \psi_{x y}^{*} \in W_{2}^{1}(\Omega)\right.
$$

$\left.\left.\psi\right|_{2}=\left.\psi_{x}{ }^{\prime}\right|_{4}=\left.\psi_{\mu}{ }^{\prime}\right|_{2,4}=0\right\}$.
We shall call the pair of functions $\psi \in W(\Omega), \pi \in W_{2}^{(1,8)}(\Omega)$ such that

$$
\begin{equation*}
\pi(x, y)=\int_{0}^{y} H(x, \xi) d \xi,\left.\quad \pi\right|_{1,3}=\int_{0}^{y} H_{1,3}(\xi) d \xi \tag{4,4}
\end{equation*}
$$

and $\forall u \in U(\Omega)$, and the following relations hold:

$$
\begin{align*}
& \left(v \psi_{x z}^{\prime \prime \prime}+\pi_{y}^{\prime \prime}, u_{x}^{\prime}\right)=\left(\psi_{y}^{\prime} \Delta \psi+f_{2}, u_{x}^{\prime}\right) \tag{4.5}\\
& \left(v \psi_{y z^{\prime \prime}}^{\prime \prime}-\pi_{x}^{\prime}, u_{\nu^{\prime}}^{\prime \prime}\right)=\left(\psi_{x}^{\prime} \Delta \psi+f_{1}, u_{y}^{\prime}\right)
\end{align*}
$$

the generalized solution of the problem of flow for the GPE.
Theorem 3 (existence of solutions of the GPE). Let the functions $f_{1,2} . H_{1.3}$ satisfy the conditions of Theorem 1. Then a pair (ψ, π) exists satisfying (4.4), (4.5) with the estimates

$$
\begin{equation*}
n_{2}=C(r, s, t)^{-1} \quad l_{3} \subseteq C(\delta ; r, s, t)^{-5-\delta}, \quad \forall \delta>0 \tag{4.6}
\end{equation*}
$$

Equations (4.5) represent the limiting case of (1.1), and the following estimates hold for the neglected terms ($r_{2}=\gamma, \delta>0$):

Froof. We shall consider the sequence $\gamma_{1}^{\prime \prime \prime} \rightarrow 0, n \rightarrow \infty$ and another corresponding sequence of solutions represented by Theorem 1 with $x=-1, v_{2}=v, v_{1}=v_{1}(\cdots)$. The inequality (3.3) ($\beta=0$) together with (4.2) yields

$$
\sqrt{v_{1}^{\prime} v_{2} m_{3}}-l_{3} \leq C(\delta ; r, \text { s. } t) v_{2}^{-5-6}
$$

which readily yields the relations (4.6), (4.7).
Now we write, in place of Eqs.(1.1), $\left(u \in C^{\prime}(\Omega)\right)$
and note that by virtue of (4.6) the set $\left\{\psi^{(r)}\right\}_{n=\overline{1, \infty}}$ is bounded, and therefore weakly compact in W (Ω) (which should naturally be regarded as a Hilbert space). This implies that a sequence $\psi^{(m)}: \psi^{(m)} \rightarrow \psi$ exists weakly in $W(\Omega)$. Then the first terms of (4.8) will be equal to zero in the limit by virtue of the estimates (4.7), and we arrive at relations (4.5). The boundary conditions hold by virtue of the smoothness established here, and this proves the theorem.

Below we give a conditional result regarding the uniqueness of the solutions of the GPE in the class

$$
E_{\mu}=\left\{\psi\left|\psi \equiv W_{2}^{3}(\Omega), \psi_{v}^{\prime}\right|_{1}>\mu y(1-y), \mu>0\right\}
$$

Theorem 4 (on the uniqueness of solutions of the GPE). For sufficiently large v there exists at most one solution in the class $\psi \in E_{\mu}$ furnished by Theorem 3 and satisfying the

$$
\begin{align*}
& \left.\nu_{i}^{(\prime)}\left(\psi_{x}^{(1)}\right)^{\prime \prime}, u_{\nu}{ }^{\prime}\right)-\left(v_{u^{\prime}}^{()^{\prime \prime}}-\pi_{x}^{(1)}, u_{y^{\prime}}^{\prime \prime}\right)=-\left(\psi_{x}^{(n)} \Delta \psi-f_{1}, u_{y}{ }^{\prime}\right) \tag{4.8}
\end{align*}
$$

$$
\begin{align*}
& v_{1} C(\delta: r, s, t) 1^{-5-b} \text {. } \tag{4.7}
\end{align*}
$$

supplementary condition $-\psi_{x}{ }^{\prime}=\nu_{1}(y) \in C_{2}\left(\bar{\Gamma}_{1}\right)$.
Proof. Writing the difference between two solutions as $\chi=\psi_{1}-\psi_{2}$ and putting $u=\chi_{1}$ we easily obtain from (4.5)

$$
\begin{aligned}
& \left.v n_{2}^{2} \left\lvert\, \div \frac{1}{2}\left\{\left\langle\psi_{2 y}^{\prime},\left(\chi_{x}^{\prime}\right)^{2}\right\rangle^{3}-2\left\langle\psi_{2 x}^{\prime}, \chi_{x}^{\prime} \chi_{y}^{\prime}\right\rangle^{3}+\left\langle\frac{\left(\psi_{2 x}{ }^{\prime}\right)^{2}}{\psi_{2 y}},\left(\chi_{y}{ }^{\prime}\right)^{2}\right\rangle\right\rangle^{3}\right.\right\} \leqslant \\
& \quad \frac{1}{2}\left\langle\frac{\left(\psi_{2 x}^{\prime}\right)^{2}}{\psi_{2 y}^{\prime}},\left(\chi_{y}^{\prime}\right)^{2}\right\rangle^{3}+\left(\psi_{2 x}^{\prime} \chi_{y}^{\prime}-\psi_{2 x}^{\prime} \chi_{x}^{\prime}, \chi_{y^{\prime}}{ }^{n}\right)- \\
& \left(\gamma_{x}^{\prime},\left(\psi_{2 x}^{\prime} \chi_{y}^{\prime}\right)_{x}^{\prime}\right)+\left(\psi_{2 x y}^{\prime}\left(\chi_{x}^{\prime}\right)^{2}\right) .
\end{aligned}
$$

The expression withir the braces is not less than zero, and we therefore have

$$
v n_{2}{ }^{2}-K(v) n_{2}{ }^{2}, \quad K(v) \rightarrow 0, \quad v \rightarrow \infty
$$

which completes the proof.
Theorem 5 (the classical solution of the NS equations). Under the conditions of Theorem $1\left(v_{1,3}=0\right)$ the problem (1.1), (1.3), (1.4) has a solution $\quad=C_{3, \alpha}(\bar{\Omega}), H \equiv C_{1, a}(\bar{\Omega}), \alpha \equiv$ (0.1) with the estimates $\left(m_{2}+n_{2}=M_{2}, m_{3}+l_{3}+n_{3}=M_{3}, C=C(r, s, w), \varepsilon>0\right)$:

$$
M_{2}-C v^{-1}, M_{3}-v^{-1} H w_{2}^{1} C C(\varepsilon) v^{-3-\varepsilon}, \quad\|\psi\|_{w_{2}^{4}}-C(\varepsilon) v^{-1-\varepsilon}
$$

For sufficiently large v the solution is unique.
Proof. A priori estimates of the sclutions of the problem in question follow from (3.4) taking (3.5) (b) into account. The existence of the solutions is established in the same manner as in Theorem 1 , and the uniqueness as in Theorem 2. The relation $\psi \in W_{2}$ follows from (3.5) (b), in which case the estimate (2.7) when $l=1$ and inclusion $W_{2}{ }^{5}(Q) \rightarrow C_{3, a}$ lead to the conclusion that the solution is classical, which completes the proof.

The results given here are obtained ion the basis of new estimate of the boundary integrals under the conditions of the flow problem, eliminating the presence of the "boundary layers" at the side cross-sections, which leads to an acceptable estimate of the norm of the velocity gradient.

The author thanks the participants of the seminars run by L.V. Ovsyannikov and the late N.N. Yanenko for their help.

REFERENCES

1. SOLONENKO V.M., Approximate Models of the Dynamics of a Viscous Fluid. Justification and Computational Methods. Kiev, Vishcha Shkola, 1980.
2. IIONS J.L., Quelques méthodes de résolution des problemes aux limites non-linèaires. Paris, Dunod, 1969.
3. LADYZHENSKAYA O.A., Mathematical Problems of the Dynamics of a Viscous Incompressible Fluid. Moscow, Nauka, 1970.
4. YUDOVICH V.I., Two-dimensional non-stationary problem of the flow of a perfect incompressible fluid through a given region. Matem.sb. Vol.64, No.4, 1964.
5. GOLOVKIN K.K., On the vanishing viscosity in the Cauchy problem for the equations of hydrodynamics. Tr. matem. in-ta im. V.A. Steklova, Akad. Nauk SSSF, Vol. 92, 1966.
6. NIKOL'SKII S.M., Approximating Functions of Many Variables and Inciusion Theorems. Moscow, Nauka, 1977.
7. MAZ'YA V.G. ano PLAMENEVSKII B.A., L_{p}-estimates of solutions of elliptic boundary velue problems in regions with ribs. Tr. Mosk. matem. o-va, Vol.37, 1978.
8. KONDRAT'EV V.A., Boundary value problems for elliptic equations in regions with conical or angle points. Tr. Mosk. matem. o-va, vol.16, 1967.
9. LIONS J.L. and MAGANES E., Non-homogeneous Boundary Value Problems and Applications. Berlin, N.Y. Springer Verlag. 1972.
10. KREIN S.G., Linear Equations in Banach Space. Moscow, Nauka, 1971.
