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STATIONARY MODEL OF THE GENERALIZED PRANDTL EQUATIONS AND THE PASSAGE TO
THE LIMIT WITH RESPECT TO LONGITUDINAL VISCOSITY IN THE
NAVIER-STOKES EQUATIONS

V.M. SOLOPENKO

It is shown that the generalized Prandtl eguations (GPE) represent a
limiting case of the Navier-Stokes (NS) equations when the "longitudinal"
viscosity tends to zero., An estimate for the neglected terms is obtained
and a theorem of existence proved for the GPE., The thecrem was established
earlier /1/ for the case of homogeneous conditions.

The passage to the limit of the non-steady Euler equations is carried
out in /2/ under the assumption that the vorticity vanishes on the solid
surfaces. Although the assumption is not physically justified, it
enables the integrals over the solid surfaces to be estimated easily.

It is well-known that the use of the Hopf truncation for the NS
equations in the inhomogeneous stationary problemof flow, leads to an
estimate of the nor of the velocity gradient depending exponentially on
viscosity /2, 3/. We note that no such difficulty arises in the case of
the non-stationary problem, nor in the Cauchy problem /4, 5/. In the
first case the "smoothing" may take place with time, and in the second
case there are no boundary effects at all.

The problem of flow with various boundary conditions specified in
terms of the stream and Bernoulli functions, free from the above drawbacks,
is studied below.

1. Formulation of the problem. The flow takes place within the square Q = (0.1) X
(0,1) . We denote the segment =0 by T, and number the remaining sides T, , , in an

anticlockwise direction TI',3 denote the inflow and outflow segments respectively, and T, ,

are rigid walls. Introducing the Bernoulli function H = p-+ Y, (¢,/)* + 1, (4, )* -+ II (the nota-
tion is standard), we consider the system of equations

]

(b= = V') H =AY S 00 Uy (1.1)
(C¥e” T Vo)) = H =AY — 0 >0

where f, , are the components of the mass force vector. When «, = v, =+, we have the NS
equations and when v, =0, we have the GPE. Eliminating H, we can rewrite (1.1) in the
following equivalent form:

Vi (A + V2 (A = — ¥ (M), + ¢ A) =+ foe— 1, - (t.2)
*Prikl.Matem.Mekhan.,45,2,227-235,1985
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The boundary conditions of adhesion have the form
‘P[2=‘Fyl lz‘;=0» ¥ |, =0. (1.3)
Two types of conditions on I 3 corresponds to two problems under consideration, but the

Bernoulli function H is given in both cases:

Hii=H @) G T o) =70, a<! i=13 .4
{problemA)
Hl;,=H {): —¥'li=uv), @@=v,=0 y=

0,1), i=14, 3 (problemB).

The condition a <1 is necessary for the problem to be Shapiro-Lopatinskii correct.
The case = —1 correspends to specifying the tangential stress. We note that we cannot
replace the last condition of (1.3) by ¢ |, =g, since the problem will then become over-
defined and from the physical point of view the flow rate is related primarily to the values
of H, ;.

Let us introduce the notation for the norms of the right-hand sides of the problem

r=[liwner s={Hilgg » t=Ivics o - (1.5)

The scalar product in L, (Q) can be written as (a. b). |l al] = (a. a)», and we use the angle
brackets for the boundary integrals

¢a, >, = abar, — { atar, .

Tat

We shall apply the anisctropic Sobolev space W,‘:““’:‘, and Bescov space BLI—‘,' , using the

notation of /6/. 1In additicn, we shall find the weight space 1,5 (Q) (/7/, Sect.l0) with the
norm

wp= 2 \rrimisan; Dul”dQ] i 1.6y

{=f= o

useful, where r is a smooth function equal in the neighbourhood of any angle point £, to
the distance to it. We shall regard D" as an n-th order arbitrary differential operator.
We define the following seminorms:

mé = =
mat =y 5, g
N (e vy ) =
av ) gy i = (\'g — vy =
N (= By o) = vy e
2 tof =211 _
a) (vif = vl el — (B — (1 = ) (B —
v %

e b (1.7

2. Auxilliary assumntions. wWe first establish the properties of smoothness.

Lemma 1 ({concerning the behaviour of solutions at the angle points). Let a finite func-
tien = W, (K) be defined within the angle K (r™> 0. y > 0). Then the following estinates
exist for any solution of the eguation vy (Aw)y” — v, (Au)," = [ satisfying the boundary con-
ditions: i ‘

(w=u," beo=0, (ua" = av,)= (Vile" Vol lxog =1, (a;
o /\(l
w=u'Y = =0, @ =u")lso =0 (b)
namely:
P ‘K)'/\(“\‘l o f Ly p=U = 0y e (a) (2.1
p.2-y-2 Bt
Yo Ty N T o p=W, ,1=0, 1 b
”“';‘.'1»:;"’“ Cvy o) wli p=W, =) s (b)

where p = v, v, < (0.1] and the monotonic function ¢ (p) has the following properties:

e(l)=¢, >', —alarccos 2a7l, e(p)—> -0, p—~0.
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Proof. Making the changs of variables z=ceosq, y=elsing, writing p= {4 — {1 - p1 replac-
ing &dt by % and introducing the operators

D= ddg, 1= D¥4 (b 20
= (4 — pcos 2¢) D? -+ 2usin 2¢ (A — 1} D 4 Apcos 2¢ (2 ~ L) + A3

we arrive, in case {a) at the following problem in the angle X:
Halg=0, air=a"{0=9 (2.2}
B {n/2) + et (012 e par(ai2) A 1R = 3A (1w p) R 2 (1 — K G (0/2) = 0.
The following system of functions is the basis of the kernel of the operator of {2,2):

wa= O AG, w1+ 029/ 5 QLaretg (VFig o)

The dispersion eégnation has the form (a=-—1)

§ =V peiate 2 2 _genin
—p {i» K R0 R | e P
(i —pA) t+¥p 7 i+pi.§.¥*§§ (2.3
and its limiting case (p— D is identical with the egquation
~AcOs At == DA% we 33 b 3 2.4y

generated by the basis of the kernel of the cperator i, In case (2.4} we find, after writing
k== zok iy, g My, that x> wlarcces2si A slightly more detailed inspection of the solution
of {2.3) shows that the strip Rehe& (2, 2+ £{p)) does not contain any eigenvalues of problem
(2.2}, Now we can apply the theory developed in /7/, and using corellary (7.1) from /7/, we
¢an obtain the estimate (2,1) (a) taking into account the inclusion V’p'smLﬁ,ﬁ;xo. In case

(b} we arrive at relations (2.2} in which the last two conditions have been replaced by &
3 = E¥ a3 =B The dispersion eguation has the form tginZ=y¢ for any p. This ensures the
required smopthness of the solution /8/ and leads to the estimate (b) which completes the
procf.

Lemma 2  lon coercivity) The differential form Y {Ag}x, vy (A", & W with cone

ditions a} =g = e = wdp T = 00" + v¥eh i = 0 or b} G=4 M= =
il =0 is coercive in the sense that the following zraqaall*les {using the notation

{1.7)) hold:
19, — (grad (vam" — Vot grad )

P VP e vy o VS0, co) w= AR {a}
Lvgms® = vand® b}
2 (grad (v — v gead oy — P
N B, ey 4y 0) (a»
19 s T, aoyo oo RHY e
Lyamgt = vl = gt (5 Ve (o w0 o RY a1
T Cvavad v (g = v = v I ]
qh s ie=0; pzmyiy, ‘.Z“\im“}’* {a)
| Vioaen g
l;;\l;{\A B lmm ), 1, P%(l‘ ) (&)
3 S

and the quantity 5 is defined in Lemma 1.

Proof, (1%). Int&grating by parts we obtain, in case (a), the boundary integral I, =wv,
{ o) Q" > But (e’ ¥p”) = Y’ 4 00% F " II%. Applying to the right-hand side of the
last equation Young's ﬁnequa..lty, we obtain the required estimate.{2}. This is proved in
2 similar mannexr. {3°). This is established with help of local graphs and subordinate decompo-
sition of the unity {seee.g. /9/, Sect.5.1). We use Lemma 1 in the neighbourhood of the angle
points, and summation completes the derivaticn of the estimates, which in turn proves the
lemma.

Let us investigate the flow of fluid through the region in guestion in the Stokes approxi-
mation. We will seek the pair of functions {§. H} representing the sclution of the problem

e vl - HY) =Ju (14" = vy — Hy == fy (2.5
Glemm o a== Y == 0§ (o 2y, sy, 2 () (a)
H am=Hy 5(y) — ' hoam==vy 5 ). (b}

We introduce the functions Hi ¥a. ¥~ which *take™ the follewing boundary values:
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Hohs=H o (Pass a‘r;y" hd=vns —Yuhs=u,
Ya. b = Ya, by = 0, y=01.

Lemma 3 (justification of the,Stokes model) Let the right-hand sides of problem (2.5) (a),
{b} have the properties [, W' (Q), Hi,= By (T3 L= B,"“ Ty8), vy B (Dhg). 1= 0.0:
= [—1,0).

Then for pe (1,2/(01 — 7)) (8), pe (1, =) (B) & unique solution of each problem

{D%, DH} = L, Q). {D%, DH} = Vi soyen () (2), (DY, D'H) = W,/ (@) (B),
exists and

v Py e —Vz“{f’ a*E-D“H“ —1H Y 1< (2.6
V. 2-y-2,p Vp, 2ov-2/p Wy

Cvifve) (n° s~ 1)

vai§ 55“,4- i .fW2~ 0w+’ + 0 (2.7

? )
where

i i ! " ). —

ry =] “wy“ 5= Hy Ha;;l"' ty! ==y H "+h vl={u ”B;;a*l .

Proof. Let us consider the more complex case (a). We shall write the sclution in the
form ¢ = ¢ —\,, H= H + H,, with || Yellws = Hollw,z << € (5,° + 4,°).  Multiplying Eqs.(2.5) scalarly
by ¥ and \1‘7,,’ and applying the estimate (1°) of Lemma 2, we obtain
N2 | — (o )+ G &)

and, since for given « we can choose ¢ so that N2> C (m?+ n?), it follows that

1 lws < € (n° =+ 57 + 1), (2.8)
The unigueness of the solution follows from estimate (2.8). Let E ¢ = & Then jgl <
C® +8° + 45 Let us write ¥ = \3 + o Tole=g; .\E satisfies the condition (a} of Lemma

2, and the estimate 3%(a) holds for it. But the ‘first inclusion of Vi gyerrp = BYOHPY _, Ys

is continuous (see the end of the procf of Lemma 4), and the second inclusion is completely
continucus when p= (1,2 — ¥)). Using the theory of linear eqguations /10/, the estimate for
¢ and the property of compactness mentioned above, we obtain (2.6]. Now the solvability
follows everywhere from the fact that the sclution of the homogeneous problem is trivial,
which proves the lemma.

Below we shall utilize the inclusion theorems of various metrics and measurements for the

spaces W.B defined in /6/.

Lemma 4 {(on the estimate of the boundary integrals). Let the functions fe W2 @), e,
h= W (Q), pe (1. oc}). Then everyone of these functions has a trace on the segment {r; = a.
z, e {0, 1]) and the following estimates hold:

1
L= 8 iglPho, dra T CCE LI Ry f’; o=+ (2.9)
) = A7z
=k g P g2 Veg &
'7
£>0, 1<ge<oo, 0>1p—2g—e>—1, pZy, 0Lk
1
‘}Ué’h Hrn=adze SO} B Siiguwu o jh e x {2.10)
e 7P T W0 A G e + =Bl 1
1
Iy={|ghllx=adas < (2.11
s
Clev igE= g G37WDRY e T gy (a)

0<ely sl
Cerpg it gy i Al
0<Le< e

€ (b)
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Proof. We shall use the multiplicative inequalities for the functions defined in R"

I/uaq,<Cll/ll},;"']l/u;;:., >0, 1—r—e>0, 1<g< oo, (2.12)

This follows from inequality (7") of /6/, Sect.7.2 and the inclusion

k+e 3
19‘,+ — W, e>0 /6/.
Using (2.12) we readily obtain the estimate

max |2 |<C(e)] gl VEE o 1/pse (2.13)
"E[anl [ CeelL (Fy I&”wpa(ra)
x=a

provided that we take into account the inclusions Bg‘”p (Fa) — HS (Tg) = €4 (Ty), 0 <L gy < ¢ (Sect.6.3),

Now, using the estimate (2.13) and the Holder inequality, we obtain

1
1'p .
11<{S max | (o, o) Pox| <C(s)uglli;‘“;,*ﬁ:guwgzm~ (2.14)
[}

Moreover, I, << Cjgtl

e and we have the inclusions
B (T

BT (Q)— B;’P“-(Q)

. -.B}f:(pﬂ), 12r=2/g—1/p+e>>0.

Using (2.12) we obtain
S B B Ve T Y Y SO B .
2Ly (@) & v:H‘lql(m PLo<a <

which, combined with (2.14), yields relation (2.9).
The estimate fcr the integral J, follows from the two inequalities:
L R Y 3 Cat X
I, < C(;)f.fu_:-‘rc‘ i W) ¢ ‘L:«ra\’l‘ WLuT,)
AN 1 S L T R LTI
and for the integral /, we have, using (2.9) (k = O,
" - P L L
Iy WLy y(Tg) ¥ huLl -y T SO pbe ey lihl'Bl'u-v)(I‘ ,
: a
O<e Ty <) .

Let us further use inequality (9) of Sect.l0.1 of /6/, and note that the weight spaces

ikl S C[ DR - + A ]
[ A | e U RCH SRR
Wiy e Vv, y va-n

by definition, which proves the lemma.

3. A priori estimates (AE) of the solutions of the problem (1.1).(1.3), (1.4)
fall into three groups for the expressions D3y. D%, Diy.
(1.5). (1.7) and begin by deriving AE I,
corbining, we obtain

(a) (b)
Below we shall use the notation

Scalar multiplying equations (1.1} by ¥, and ¥, and

vimo? = vt =, P — 11':,1": /PR L R (H, u'yl>13—‘ (For 4") + (/1 'qu’) .
Simple estimates using Lemma 2 (1°)

yield
No? (@, &, vy0) 7 C Ivitmy =~ (s + 1) n,). (a) @.h
vimy®  vanp® T C (s 4 1) my. (1.5 = 0). (b)

To derive AE 1I we perform an analogous operation, multiplying the components of the

vector grad (y»" = fy,:"). Considering case (a) first and taking into account the inequality
(2°) (a) of Lemma 2, we obtain

Net 7B — va) (Y ¥ = Uy — ax's ¥ad” = Py — (3.2)
CHyv 4" = By = BCHSy 42t —
Wy (" = P’ — ¥ (4" = By’),s AY).
Using the second equation of (l1.1) and the properties of f;,» and applying the ineguality
(2.11) (a) when z; =y, 2, = 2. g =VY," h =4,", ¢ = 9.2, we will write (this is the central stage
of the derivation of AE II):
FCH D 4™t =17 4™ | K0 (99 nd Py + ngp=v (§D3y ] .

= ng) .
Via-v. v
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Integrating the trilinear form in (3.2) by parts and using the condition (1.4) (a), we obtain

1, \'l'fylv |- (x—1) '¢1/’"]: o (ﬁ e 1) (\py'”)z>13 - (ﬁ - 1) W'xl‘ry‘” - ‘Ly’ll:\ ’ u\;’u) .
Let us obtain estimates for the principal terms. Using the inequality (2.10) (k = 1), we
obtain

[y (") |2 C(8) myv iyt

and taking into account (2.9) (h = 1), we find
[ ¥y ] Thv T VO R 0] S CO) mals (ngh g — L)
el

Substituting all the estimates into inequality (3.2) and neglecting higher-order terms,
we obtain

N afC i nd " (s — ngh™v2 (1 Diy i -+ ng) — (3.3)
Vira-v, v
C@Eua s S = [ L= B3y =Cr s, 0= 1)

In the same manner we derive AE II (b):

Vimg® S volgt — Bvang? T BviC (€) ny 7 (ng + L)l ¢ W+ (3.4)
C () ny - n)> 8B (my -- Iy = ng)te & |1 — B | (my +
IR
The third group of a priori estimates AE II1 are obtained from the estimates (2.6), (2.7)
(I =0) of Lemma 3, provided that we replace r,° by the norm in L, of the right-hand side
of equation (1.2)
Dy l
Y-y -
g l ;O st (3.5)
' “'é |
Cueymy —- 2 VeEumg — I = ng)¢] .

4. The existence of solutions and passage to the limit. Below we shall prove
the theorem of the existence of solutions of the flow problem in two formulations. We introduce
a Hilbert space

M=y = W3(Q. vy 19:q-\’|4=¢y' lo o =0,
(" = 2, s =)

with the norm | - |y, =i D%, equivalent tc | -ilws We also define a class cf functicns
VO Q) = {u | Du = Loy, D= Vg y ()) 1 € (0,

Theorem 1. {(the existence cf sclutions of the general problem). Let the right-hand sides
of problem (1.1). (1.3). (1.4) (a) H, 4 1,5 = Co(T1a), f1.= WP (Q) and let the parameters satisfy

the conditions o = [—1,0).0 <, .7 v, Then its solution 4 = = V&, H= 1% exists and the
following inegualities hold:

VN voms =y 7 C (s v, g thar, <2 (4.1

Coprros. vy Vv
DA Co(vor.s Aoy
13-y, ¥
where - = (0.¢ (»). and the function ¢ (0) is defined in Lemma 1.
Proof. Writing the required function in the form ¢ =4, +9 ($ satisfies the conditions

(1.3), (1.4) (a)), we will consider the operator 4 : Me— M, placing the functions ¥, on the right-
hand side of system (l.1) in one-to-one correspondence with the sclution of the Stokes problem
-\1-2 (Lemma 3). We will show, in accordance with the Leray-Schauder principle /3/, that A is
a completely continuous operator and the a priori estimate ¢ lln, < K holds for any possible
solution of Egs.(1.1) with a multiplier &= {0,1].
For any specified 7, & c¢an be chosen such, than when f =1, the estimate (3.1) (a)

yields .

VNivgmy + 1y < C (ry s, 1) vyt (4.2)

and substituting the estimate (3.5)(a) into the inequality (3.3) (B =1), we obtain
vy (mg? = I ng®) v € (T, s, 1) (g mp)Y72 (my + Iy + ngl V7 (4.3)
Relation (4.1) easily follows from (4.2). (4.3). But by virtue of the estimate (3.5) (a) the
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operator A transforms the set bounded in M, into a set bounded in V,®, and hence compact

in M, (Lemma 3), which proves the theorem.

Theorem 2. (the existence of solutions of the NS equations). When V)= Ny =V, the
problem of flow (1.1), (1.3), (1.4) (a) has, under the conditions of Theorem 1, a solution with the
estimates (V86> 0)

my+n, KC (s v Igl, + v <
2

C®;,rs ) ya-b
WD ll,e  +TIDMH| e <C@Girs f)ve?.
2,4 2,8

When «~ is sufficiently large (compared with r,s, t), the solution is unique.

. Proof. The above estimates are easily obtained, provided that the estimate in the space
Voo (Lemma 1) is taken into account. The uniqueness can be proved using standard methods
/1/.

Passing to the GPE we introduce the classes of functions
U@ ={ulusW?2@Qul.=w' |=u/1,,=0
u' |, = 0) .
W Q= |y = W2 Q) tne W L)
¢l2=¢x,,‘=¢y)|2.4=0) .
We shall call the pair of functions ¢$& W (Q), n e Wi (Q) such that

14
H, Bt afo=\Hy @d¢ (4.4)

0

alxr, y)=

Sty

and Vue U (Q), and the following relations hold:

(Vs ny”, ') = (A% + fou ) (4.5)
(V\Fy'” - ﬂx’, uy’") = (‘4:'5‘# - fl! uy,)

the generalized solution of the prokblem of flow for the GPE.

Theorem 3 (existence of solutions of the GPE). Let the functions f;,.. H, s satisfy
the conditions of Theorem 1. Then a pair (Y, 1) exists satisfying (4.4), (4.5) with the esti-
mates

ny -l C(ros, ) 1 TC (s, tyst, YO >0, (4.6)

Equations (4.5) represent the limiting case of (1.1l), and the following estimates hold
for the neglected terms (v, =+, 8> 0):

B 7 VNC (B vt vy, | < 4.7
v C (b t) vl

Proof. We shall consider the sequence v;"’— 0, n— o and another corresponding sequence
of solutions represented by Theorem 1 with a = —1.v, = ¥,%; = v,0). The ineguality (3.3)(f = 0)
together with (4.2) yields

Vv vamg = 1, X C(8;r. 5. 1) vt

which readily yields the relations (4.6), (4.7).
Now we write, in place of Egs.(1.1), (= U (Q)

Wl u) = ks = Al u) =AY — f ) (4.8)
'\)‘(ly ! (‘Hz). Uy,) - (VQLI] —_ T((g”)vv u;.) = — (‘u(xﬂ).ﬁ\l —_ f;l' Vv')

and note that by virtue of (4.6) the set {\;(”)}n=1—; is bounded, and therefore weakly compact

in W (Q) (which should naturally be regarded as a Hilbert space). This implies that a sequence
Pm: ptm) >4  exists weakly in W (Q). Then the first terms of (4.8) will be equal to zero
in the limit by virtue of the estimates (4.7), and we arrive at relations (4.5). The boundary
conditions hold by virtue of the smoothness established here, and this proves the theorem.
Below we give a conditional result regarding the uniqueness of the solutions of the GPE
in the class
Es={le s W@, ¢/ 1. >u —y) u>0}.

Theorem 4 (on the uniqueness of solutions of the GPE). For sufficiently large ~ there
exists at most one solution in the class ¢ & E, furnished by Theorem 3 and satisfying the
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supplementary condition —4,' =1, @) & C, (T)).

Proof. Writing the difference between two sclutions as % =%, — V¢, and putting u = %,
we easily obtain from (4. 5)

wlzgi‘l {<‘p2w (7: )2>3 —2 <‘P2xv Y= 71/ >s + < (%" r i ty )2> }Q

()2 , o
; \; = Ky )2> ($ox'%y — $22%a"s Y) —
(/.x ' (‘Pﬂx Xy )x ) - ("’2:11‘ (X.x')z)

The expression within the braces is not less than zero, and we therefore have
v, TR ()n?, K{()—=0, ~voox
which completes the proof.

Theorem 5 (the classical solution of the NS equations). Under the conditions of
Theorem 1 (v, ;3 = 0) the problem (1.1), (1.3), (1.4) has a solution V= Caa (Q) H= 0. Q)
(0.1)with the estimates (m,~n,= My, my +l3+ng=M,; C=C(r,s,w),e>U):

My 2O, My ¥ H G 2 Cv [y, TCE Ve,

For sufficiently large v the solution is unique.

Proof. A priori estimates of the solutions of the problem in question follow from (3.4)
taking (3.5) (b) into account. The existence of the solutions is established in the same
manner as in Theorem 1, and the uniqueness as in Theorem 2. The relation ¢ & W,® follows
from (3.5) (b), in which case the estimate (2.7) when [ =1 and inclusion WS (Q)— (C, ., lead

to the conclusion that the solution is classical, which completes the proof.

The results given here are obtained ion the basis of new estimate of the boundary integrals
under the conditions of the flow problem, eliminating the presence of the "boundary layers"
at the side cross-sections, which ledds to an acceptable estimate of the norm of the velocity
gradient.

The author thanks the participants of the seminars run by L.V. Ovsyannikov and the late
N.N. Yanenko for their help.
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